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Abstract We examine dynamics of a fault motion by
analyzing behavior of a spring-slider model composed
of 100 blocks where each block is coupled to a vary-
ing number of 2K neighboring units (1≤2K ≤N, N =
100). Dynamics of such model is studied under the
effect of delayed interaction, variable coupling strength
and random seismic noise. The qualitative analysis of
stability and bifurcations is carried out by deriving an
approximate deterministic mean-field model, which is
demonstrated to accurately capture the dynamics of
the original stochastic system. The primary effect con-
cerns the direct supercritical Andronov–Hopf bifurca-
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Department for Scientific Research and Informatics,
Institute for Development of Water Resources “Jaroslav
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tion, which underlies transition from equilibrium state
to periodic oscillations under the variation of coupling
delay. Nevertheless, the impact of delayed interactions
is shown to depend on the coupling strength and the
friction force. In particular, for loosely coupled blocks
and low values of friction, observed system does not
exhibit any bifurcation, regardless of the assumed noise
amplitude in the expected range of values. It is also sug-
gested that a group of blocks with the largest displace-
ments, which exhibit nearly regular periodic oscilla-
tions analogous to coseismic motion for system para-
meters just above the bifurcation curve, can be treated
as a representative of an earthquake hypocenter. In this
case, the distribution of event magnitudes, defined as a
natural logarithm of a sum of squared displacements,
is found to correspond well to periodic (characteristic)
earthquake model.

Keywords Mean-field approximation · Spring-block
model · Seismic noise · Time delay · Coupling
strength · Periodic earthquake model

1 Introduction

From the purely mechanical viewpoint, the dynamics
along an active fault could be described by a stick-
slip motion of a spring-slider model complemented
by an appropriate rate- and (or) state-dependent fric-
tion law [1–4]. For such a setup, a sudden drop of
shear strength or an increase in block velocity is inter-
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preted as an onset of seismic motion, while the mag-
nitude of an event is defined as a natural logarithm of
a superthreshold displacement of a block for a sim-
ple mono-block model, or a sum of superthreshold dis-
placements of blocks involved in the event in case of
a complex multi-block model [5]. The distribution of
magnitudes should follow a power-law behavior, viz.
the Gutenberg–Richter law, in order for a spring-block
model to simulate the real observed fault dynamics.
However, mono-block models [6,7] typically do not
generate irregular time series of displacements unless
some additional ingredients are introduced, including
the friction lag [8], transient acceleration changes [9],
the seismic noise or some particular forms of parame-
ter perturbation [10]. Nevertheless, irregular distribu-
tion of main events is inherent for multi-block models,
where a different number of moving blocks may par-
ticipate in each event. For instance, De Sousa Vieira
[6] considered the dynamics of two- and three-block
models, having found that the relevant complex behav-
ior is associated with the emergence of deterministic
chaos obtained by fine tuning of control parameters.
Similarly, Erickson et al. [11] analyzed the dynamics of
a one-dimensional Burridge–Knopoff model, showing
that it also exhibits both periodic and chaotic motion,
whereby the transition to chaos is size dependent. In
the present paper, we also examine the dynamics of a
multi-block fault model, under the effect of two addi-
tional factors that impact the local block dynamics.

In particular, we assume that the main source of
dynamical instability in a spring-block system, corre-
sponding to the onset of seismic activity along a real
fault, derives from the delayed interaction between the
blocks. Introduction of such a delay has first been sug-
gested byBurridge andKnopoff [1], who discussed this
type of interaction in their original model comprised of
10 blocks. In their study, the idea has been that the
stress transfer between the first and the last few blocks
of the array is mediated by a group of central blocks,
involving a time delay of the order of the adopted vis-
cous time constant. In our study, this effect is included
by explicitly assuming the delayed interaction between
the coupled units.

Apart from the inclusion of time delay, we also
investigate the effect of the range of interactions on
the fault dynamics. In particular, we consider the cases
from the nearest-neighbor interactions up to a glob-
ally connected assembly of blocks. The intention is
to examine whether and how the range of interactions

influences the scenario of transition to seismic motion.
This effect is analyzed in the presence of a background
seismic noise, which we assume to be the white noise,
the point corroborated by the real observed data [12,13]
and the previous studies of stick-slip motion [14].

The considered setup of a spring-block model of
a fault motion, which involves the effects of coupling
delay, the seismic noise as well as 2K nearest-neighbor
interactions, is substantially distinct from the limit case
of a single blockmotion discussed in our previous study
[8], or the model involving only the nearest-neighbor
interactions [15], used to describe the case of a thin iso-
lated plate subjected to a friction force and driven by
a shear force. Some previous studies have considered
more complex spatiotemporal interactions of blocks
[16–18], but without including the effects of delayed
interaction and seismic noise. Our aim is to analyze the
stability and bifurcations of the fault dynamics under
the effect of the two latter factors. To this end, we shall
derive a mean-field approximate model for the collec-
tive motion of blocks [19–21].

The paper is organized as follows. In Sect. 2, we
describe the model of a fault motion comprised of
delay-coupled blocks influenced by seismic noise. We
also introduce themean-field approximation of the sys-
tem’s collective dynamics. In Sect. 3 are presented the
results of local bifurcation analysis carried out for the
approximate system, togetherwith the comparisonwith
the behavior of the starting stochastic system. Section 4
concerns the analysis ofmagnitude distribution ofmain
events for a group of blocks with the largest displace-
ments. A summary of our main results and directions
for further research are provided in Conclusions.

2 Model derivation

We consider a system comprised of N blocks, whereby
each block i interacts with 2K nearest neighbors. Thus,
the fault is represented as a one-dimensional array of
blocks where a given block i is coupled to K of its
neighbors on each side. Local dynamics is given by:

u̇i = vi

v̇i = −ui + �(vi + v0) − �(v0)

+ C

N

∑

j∈J

(
ui+ j (t − τ) − ui

)+√
2Dξi (t) , (1)

where J denotes the set of indices J = {−K , . . . , K }\
{0}. Interaction is characterizedby the coupling strength

123



Dynamics of fault motion in a stochastic spring-slider model 2565

C and the delay τ , which is assumed to be uniform.
Parameter v0 denotes the pulling velocity of the upper
moving plate. ξi (t) are independent Gaussian white
noise terms, such that 〈ξi 〉 = 0,

〈
ξiξ j

〉 = δi j holds. In
general, seismic noisemayderive fromvarious sources,
including small-scale faulting, aswell as different irreg-
ularities and inhomogeneities, but there may also be
randomperturbations of undefined origin [22,23].Note
that coherent noise is hardly expected to occur at seis-
mogenic depth, since it typically arises from the reflec-
tion of seismic waves, ground rolls or traffic noise. A
detailed background regarding model (1) is provided
in “Appendix”.

It has to be emphasized that model (1) represents a
one-dimensional array of blocks, where blocks at the
end of the array are connected to neighboring blocks
only on one side.

One should specify the friction force Φ, which is
in (1) for simplicity given in general form. We assume
that Φ conforms to a rate-dependent friction law:

�(v) = μ0 − a ln (v) , (2)

whereμ0 is a steady-state friction (whose values needs
to be adequately chosen so as to secure the proper action
of friction force) and a represents a material property
which depends on the temperature and pressure condi-
tions. Such dependence of friction on slip rate is qual-
itatively supported by the recent laboratory findings
[24,25].

In the absence of coupling delay and seismic noise
(τ = 0,D = 0), model (1) has a unique stable equi-
librium (for the assumed distance between neighbor-
ing blocks in initial position of the order of magnitude
10−5) given by (ui , vi ) = (0, 0).

In principle, the collective dynamics of the multi-
block model can be described by introducing the
macroscopic variables u= 1

N

∑N
i=1 ui , v= 1

N

∑N
i=1 vi .

In order to be able to analyze dynamics of the start-
ing stochastic model, we need to derive its determinis-
tic approximation, which will qualitatively describe its
dynamics, and which will enable conduction of local
bifurcation analysis. The method we apply consists in
deriving a deterministic mean-field model [26] for the
macroscopic behavior of system (1), whereby the noise
intensity features as an additional bifurcation parame-
ter. Within such a framework, the collective dynamics
is described in terms of the means, viz. the assembly-
averaged displacementmu and the average velocitymv,

as well as the associated variances and the covariance.
The ensuing mean-field model is amenable to local
bifurcation analysis and as such may serve to quali-
tatively describe the stability and bifurcations of the
starting stochastic system.

The detailed derivation of the mean-field model
is presented in “Appendix”. As discussed there, the
mean-field model may be presented as a system of two
delay-differential (deterministic) equations describing
the evolution of the means:

ṁu (t) = mv (t)

ṁv (t) = −mu (t) + a ln (ν0) − a ln (mv + ν0)

+ 1

2

D

(mv + v0)
+ 2KC

N
(mu (t−τ)−mu (t))

(3)

In the next section are provided the results of bifurca-
tion analysis for the model (1), together with a brief
discussion on the effects of each of the system parame-
ters. The numerical simulations of the starting stochas-
tic system (1) are carried out for the array of N = 100
blocks using the Runge–Kutta fourth-order algorithm
with a time step Δt = 0.001.

3 Local bifurcation analysis of the mean-field
model

Mean-field model (3) has a unique stable stationary
solution (mu,mv) = ( D

2v0
, 0). We have performed the

stability and bifurcation analysis of model (3) analyti-
cally. In particular, system (3) is linearized around the
fixed point by assuming that the deviations are of the
form δmu(t) = Aeλt , δmv(t) = Beλt , δmu(t − τ) =
Aeλ(t−τ). This yields a set of algebraic equations for
the coefficients A and B, whereby the condition for
the existence of a nontrivial solution is given by the
characteristic equation:

λ2 + λ

v0

(
a + D

2v0

)
+ 1+ 2KC

N
(1− e−λτ ) = 0. (4)

Bifurcations of the stationary state take place for the
parameter valueswhere the roots of characteristic equa-
tion cross the imaginary axis. Given that λ = 0 is not
the solution of (4), we look for the pure imaginary roots
of the form λ = iω, adopting that ω is real and posi-
tive. Having substituted for λ in (4), one separates the
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Fig. 1 τ(K ) bifurcation curve describing the destabilization of
equilibrium in the mean-field model (3) via Andronov–Hopf
bifurcation. The remaining systemparameters are fixed atC = 5,
D = 0.0001, a = 0.1, v0 = 1.2. Qualitatively similar diagrams
are obtained for other values of C and D. EQ and P denote the
equilibrium state and periodic oscillations, respectively. Corre-
sponding time series for mean displacement of systems (1) and
(3) at points a and b are provided in Fig. 2

real and the imaginary part and equates them both with
zero. After some algebra, we arrive at the expression
for the critical coupling delay:

τ = 1

ω
arctg

ω
v0

(
a + D

2v0

)

ω2 − (
1 + 2KC

N

) (5)

Further analysis shows that the mean-field model (3)
undergoes Andronov–Hopf bifurcation. Bear in mind
that (5) actually defines multiple branches of Hopf
bifurcation curves given by τ + jπ/ω, where j =
0, 1, 2, . . .. In the present study, we focus only on the
first bifurcation curve, since the starting stochastic sys-
tem (1) above the bifurcation curve exhibits behavior
characteristic for strongest earthquakes, as explained
further below.

In order to facilitate an easier comparison between
the dynamics of the approximatemodel and the starting
stochastic system, which is simulated for N = 100, we
have also fixed N = 100 in (5) and plotted the corre-
sponding τ(K ) bifurcation curve, see Fig. 1. Naturally,
the relevant range of K values is then K ∈ [1, 50].
Also note that the analysis here is confined to values

of coupling delay which are of the order of the oscilla-
tion period for the mean-field model (3) just above the
bifurcation curve (T ≈ 3.5).

Qualitative validity of the above results is verified
numerically by demonstrating that the starting stochas-
tic system (1) and the mean-field model (3) exhibit
qualitatively analogous dynamics, see Fig. 2. From
Fig. 2, one may infer that the mean-field model in
qualitative sense accurately reproduces the collective
behavior of the original model (1). An important point
is that we also find a quantitative agreement between
the dynamics of the two systems in a sense that the
respective oscillation frequencies of the starting sto-
chastic and the approximate system above the bifurca-
tion curve are quite closely matched. The difference in
respective amplitudes of periodic motion is negligible,
considering the fact that matching of the amplitudes
could be found only in cases where the behavior of the
mean-field model exhibits similar displacements as the
original model comprised of a large number of indi-
vidual blocks. It could be easily shown that such an
outcome can be expected for the multi-block model
made up of blocks coupled in the all-to-all fashion.

As shown in Fig. 1, our analysis indicates the occur-
rence of a supercritical Andronov–Hopf bifurcation
from equilibrium state to periodic motion, which is
induced by increasing the time delay in interaction
among the coupled blocks. For relatively high values
of τ , bifurcation can arise even in case of very small
range of interactions (K = 3). Nonetheless, the results
obtained also imply that the bifurcation may occur by
increasing the number of interacting blocks for a con-
stant value of coupling delay. From the seismologi-
cal viewpoint, this means that onset of seismic motion
could be induced solely by enlarging the active length
of a seismogenic fault, provided there is a delayed inter-
action among different fault segments.

Results shown in Fig. 1 also imply that there is no
bifurcation for time delay τ < 0.9. In this case, system
(1) remains in equilibrium state under increase in K ,
viz. coupling more blocks together does not lead to the
emergence of the oscillations. From the seismological
viewpoint, this means that effect of delayed interaction
is essential for occurrence of periodic oscillations, i.e.,
seismic regime,whichwill be verified in the subsequent
section.

Another interesting point is that for the case when
block is coupled only to its nearest neighbors (K = 1),
there is no bifurcation with the increase in time delay.
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Fig. 2 Qualitative analogy between the dynamics of the start-
ing stochastic system and the mean-field approximated model.
The left column shows the time series of mean displacements
of blocks for the starting stochastic system, whereas the right
column refers to the approximated system. The top (bottom) row
is obtained for parameter values corresponding to point a (point
b) in Fig. 1. Initial conditions are set in vicinity of the equi-

librium point. Equilibrium state is illustrated for τ = 1.5 and
K = 3, while periodic oscillations are illustrated for τ = 1.92
and K = 10. Qualitatively similar diagrams of periodic oscil-
lations are obtained for other values of K and τ just above the
bifurcation curve. The remaining parameters are fixed at C = 5,
D = 0.0001, a = 0.1, v0 = 1.2

Hence, it turns out that for such simple models, the
effect of delayed interaction is negligible.

One should note that previous analysis is conducted
for the constant values of parametersC , D and a. Given

the fact that these parameters could significantly affect
the dynamics of fault motion, it is of special interest
to analyze how the dynamics of the original system
changes under their variation.
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3.1 Effect of seismic noise

Effect of seismic noise on dynamics of system (1) is
negligible for the range of values relevant from the seis-
mological viewpoint, i.e, the common ratio of coseis-
mic slip rate versus seismic noise is in the range 10−2–
10−7. Nonetheless, in the context of investigating the
noise effects, we have further examined the possibility
for the occurrence of stochastic bifurcation in system
(1), which conforms to the scenario where the transi-
tion to oscillatory motion is induced by increasing the
noise intensity.

However, having examined the average amplitudes
of a sufficient number of realizations of system (1)
below and above the bifurcation curve, we have
observed no significant change for values of seismic
noise up to 0.1. Thus, the qualitative impact of noise
on system dynamics can be considered secondary to
that of coupling delay. Also, for relatively high val-
ues of seismic noise and for small K , introduction and
increase in time delay does not give rise to bifurca-
tion. In other words, noise may then suppress the onset
of the periodic oscillations. For instance, if the level
of seismic noise is D = 1, while the other parame-
ters are fixed as shown in Fig. 1, at least K = 6 is
required for the Andronov–Hopf bifurcation to emerge
by increasing the time delay. However, from a seismo-
logical viewpoint, such a case cannot be expected in
real conditions in Earth’s crust, so these phenomena
could be interesting solely from the theoretical view-
point.

3.2 Effect of coupling strength

In qualitative terms, the impact of coupling strength C
on dynamics of a spring-block model with time delay
is similar to the effect of K . In particular, bifurcation
in the starting stochastic system (1) occurs solely by
increasing the coupling strength provided there is inter-
action delay between the units, see Fig. 3. Also, in anal-
ogy with the effect of K , one finds a delay threshold
below which the increase in coupling strength does
not induce any dynamical change. Nevertheless, for
smaller values of C , increase of time delay may or
may not induce bifurcation, depending on the partic-
ular K value. In other words, for small C , there exists
a threshold K value below which increase in τ cannot
give rise to Andronov–Hopf bifurcation. For instance,

Fig. 3 Family of τ (K) Andronov–Hopf bifurcation curves of the
mean-field model (3) for different values of coupling strengthC .
The remaining parameters are held constant at D = 0.0001,
a = 0.1, v0 = 1.2. Qualitatively similar diagrams are obtained
for other values of friction parameter a

when C = 0.5, each block has to be coupled with at
least 15 blocks on each side in order for the system
to undergo the Andronov–Hopf bifurcation with the
increase in τ .

3.3 Effect of friction

From the seismological viewpoint, it is interesting to
analyze the effect of friction parameter a on the dynam-
ics of system (1). The results obtained indicate the
occurrence of an inverse supercritical Andronov–Hopf
bifurcation, induced solely by decreasing the friction
(Fig. 4). Such a change of friction is expected in real
conditions, because friction usually decreases with the
increase in fault motion velocity. Moreover, this sug-
gests that for the fault in equilibrium state, a reduction
of friction along the fault zone due to effect of pore
water or similar may give rise to bifurcation, provided
there are delayed interactions among different parts of
a fault, i.e., different fault segments.

4 Distribution of main events

The results obtained indicate a transition from equilib-
rium state to periodic motion may arise by increasing
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Fig. 4 Family of τ (K) Andronov–Hopf bifurcation curves
describing the destabilization of equilibrium of the mean-field
model for different values of friction parameter a. The remain-
ing parameters are fixed at D = 0.0001, C = 5, v0 = 1.2.
Qualitatively similar diagrams are obtained for other values ofC

the time delay, or due to increase in coupling strength
and/or decrease in friction force under the condition
that there exists a coupling delay. From the purely seis-
mological viewpoint, if we relate magnitude of a seis-
mic event to displacement of system (1), it appears that
regular periodic motion could not be considered as an
example of a realistic scenario given that the sequence
of earthquakes should obey power-law behavior. In
particular, a necessary condition for the Gutenberg–
Richter scaling law to be satisfied is that the sequence
of seismic events is irregular. Such a dynamical regime
could emerge due to effect of seismic noise or the co-
effect of seismic noise and some global attractor when
the system is near the bifurcation curve, but still in
the equilibrium state [27]. However, the results of our
analysis here indicate that the sole effect of seismic
noise is insufficient to generate high-amplitude irreg-
ular oscillations (higher than the noise level, at least).
Nonetheless, we have also found no global attractor
for different values of initial conditions away from the
equilibrium point. In light of these arguments, the inter-
pretation of the results so far requires additional atten-
tion. In particular, a better understanding of the relation
to actually observed behavior of the real faults may
be gained by looking into the dynamics of a group of
coupled blocks with the largest displacements in the
considered array (1). This group of blocks we take to

Fig. 5 Time series of displacement sums for a group of blocks
with the largest displacements in the starting stochastic system
(1). Initial conditions are set near the equilibrium point. The
parameter values are fixed at τ = 1.92, K = 10, C = 5, D =
0.0001, a = 0.1, v0 = 1.2

correspond to a hypocenter of a seismic event. In the
present case, magnitude of such an event M is defined
as a natural logarithm of a sum of squares of displace-
ments ui :

M = ln

(
N∑

i=1

(ui )
2

)
(6)

where N is the number of coupled blocks with the
largest displacements in system (1). This definition is
similar to the proposal of Kawamura et al. [5], but with
a small change regarding the fashion in which the dis-
placement sum is calculated. In particular, we take the
sum of squared displacement for each block as a mea-
sure of accumulated potential energy released during a
single event. This way of calculating the stored poten-
tial energy corresponds to our initial assumption on
elastic springs connecting the blocks in system (1).

In Fig. 5 is shown the regular sequence of displace-
ment sums for a group of blocks with the largest dis-
placements. Analysis is conducted for the state of sys-
tem (1) just above the bifurcation curve, as shown in
Fig. 2c. These events are regularly spaced,with approx-
imately the same magnitude. Therefore, the proposed
model (1) can be regarded as a periodic or characteris-
tic earthquake model [28,29], which has already been
observed in the real conditions in the Earth’s crust.
Indeed, the occurrence of earthquakes with the largest
magnitudes along Nankai megathrust or Parkfield sec-
tion of the San Andreas fault is considered to be nearly
periodic [30].
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5 Conclusions

Themain goal of the present study has been to examine
thepossibility of inducing seismicmotion along the real
fault in case where fault segments of different sizes are
active, under the assumption of a delayed interaction
between the fault constituents, and including the impact
of background seismic noise. The stability analysis, as
well as the qualitative analysis of bifurcations exhib-
ited by the given fault model, is carried out by consid-
ering the appropriate mean-field model. In particular,
beginning from the original system of 2N coupled sto-
chastic delay-differential equations, we have derived a
system comprised of only of two deterministic delay-
differential equations for the approximate system.

The dynamics of the starting stochastic and the
approximate model are demonstrated to be qualita-
tively similar. Another important point concerns the
quantitative agreement between the two systems, in a
sense that the oscillation frequency of the mean-field
model matches quite closely the one observed for the
stochastic system. Nevertheless, the oscillation ampli-
tudes are the same only in case of globally coupled
blocks in the starting stochastic system (1). In other
instances, corresponding to smaller K , the amplitudes
of the mean-field model may be up to 1.5 times higher
than the amplitudes of periodic oscillations in the sys-
tem (1), which does not have significant impact on our
results from the viewpoint of seismology. In particular,
we are only interested in type of oscillations (regular
or irregular), while their amplitude is irrelevant, since
the models is dimensionless; hence, there is no direct
analogy with the real observed earthquake data.

Results of our research indicate that the onset of the
oscillations in the starting stochastic system (1), which
is shown to qualitatively reflect the seismicmotion, can
be characterized by the direct supercritical Andronov–
Hopf bifurcation of themean-fieldmodel. In the present
study, we have focused only on the first bifurcation
curve, describing the destabilization of equilibrium,
whereas the relevant values of coupling delay have been
determined according to the oscillation period of sys-
tem (1) just above the bifurcation curve.

Regarding the individual effect of the introduced
parameters, the main finding is that the transition in
system (1) from equilibrium state to periodic oscilla-
tions is primarily affected by the coupling delay. How-
ever, the impact of the delayed interactions is found to
strongly depend on the coupling strength. In particular,

in case of ”weak” coupling, the increase in interac-
tion delay cannot generate the transition to limit cycle.
In other words, the model comprised of loosely cou-
pled blocks cannot exhibit complex dynamics. A sim-
ilar effect, though less expressed, is observed for the
impact of friction. In particular, for lower values of fric-
tion, system (1) can exhibit the transition from equilib-
rium state to periodic motion for smaller K . As for the
effect of seismic noise, the results obtained imply a less
significant role in the dynamics of system (1) for the
values consistent with the real observed data (ratio of
seismic noise to velocity should be smaller than 10−2).
The impact of strong seismic noise (e.g., D ≈ 1.0) is
similar to the effect of high values of coupling strength
and friction. Apparently, for such a large seismic noise,
there is a certain K threshold above which the system
can exhibit Andronov–Hopf bifurcation by increasing
the coupling delay.

From the seismological perspective, an important
point is that we propose a new definition of an earth-
quake magnitude for the considered class of spring-
block models. In particular, we define magnitude of
an event as a natural logarithm of sum of squared dis-
placements for a group of blocks with the largest dis-
placements. Our results indicate that these sequences of
events are regular, whereby the distribution of the num-
ber of events in dependence of their magnitude corre-
sponds to the occurrence of the strongest (characteris-
tic) earthquakes, as the ones recorded along the Nankai
megathrust or Parkfield section of San Andreas fault.

By analyzing dynamics of the group of blocks
with largest displacements, we partially captured local
dynamics of the real model, which also turned out to
be regular, similarly to the mean displacement of the
whole array of blocks. Significant deviation from the
regular periodic oscillations could be expected for the
blocks at the end of the array, which are only coupled to
blocks at one side of the ”chain.”However, dynamics of
these blocks is irrelevant from theviewpoint of seismol-
ogy, since their displacements are quite low and are not
connected directly to the earthquake ”hypocenter” (i.e.,
to the group of blocks with the largest displacements).

Though the present analysis provides a clear insight
on the role of delayed interaction, seismic noise and
coupling strength on the collective dynamics of the
multi-block fault model, one should still note that the
friction law (2) is assumed in a simplified way, neglect-
ing the potential impact of the state of the contact sur-
face. Moreover, we have analyzed only the case of
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a one-dimensional spring-slider model, while in real
conditions the fault motion represents a spatiotemporal
problem, the point which certainly has to be addressed
in future research.
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Appendix: Model of local block dynamics

Present research on earthquake fault motion is based on
the analysis of a non-dimensional mono-block model,
introduced in [6]:

Ü (t) = −U (t) + �
(
U̇ (t)

) + ν0t, (7)

where variable U represents the block displacement,
U̇ is the velocity of the block (defined in the stand-
ing reference frame), Ü is the block acceleration, ν0 is
the dimensionless pulling speed and t is time variable.
Friction force Φ is assumed to be rate dependent. The
unstable equilibrium around which the orbit of a block
moves in phase space is given by:

Ue(t) = ν0t + �(ν) , (8)

which is determined by setting Ü = 0 and U̇ = ν0 in
(7).

By introducing U1 and U2 to denote the displace-
ment and the velocity of a single block, (7) may be
rewritten as

U̇1(t) = U2(t)

U̇2(t) = −U1(t) + �(U2 (t)) + ν0t. (9)

Having applied the coordinate transformation:

U1new (t) = U1 −Ue (t) = U1 (t) − (ν0t + �(ν)) ,

U2new (t) = U2 (t) − ν0, (10)

and switching back to old notation, one arrives at the
following system of equations for the dynamics of a
single block:

U̇1(t) = U2(t)

U̇2(t) = −U1(t) + �(U2 (t) + ν0) − �(ν0) . (11)

Beginning from (11), one can derive the spring-slider
model for N interconnected blocks given by the system
(1) in the main text, cf. Sect. Model derivation.

Derivation of the mean-field approximated model

The mean-field model characterizes the system’s
behavior in terms of the means:

mu = 〈ui 〉 = 1

N

∑

i

ui , mv = 〈vi 〉 =
∑

i

vi , (12)

the associated variances:

su =
〈
δu2i

〉
=

〈
(ui − mu)

2
〉
=

〈
u2i

〉
− m2

u

sv =
〈
δv2i

〉
=

〈
(vi − mv)

2
〉
=

〈
v2i

〉
− m2

v (13)

and the covariance

U = 〈δuiδvi 〉 = 〈(ui − mu) (vi − mv)〉
= 〈uivi 〉 − mumv. (14)

Equations for the evolutionof themeansmaybederived
as follows:

ṁu = 1

N

∑

i

u̇i = 1

N

∑

i

vi = mv

ṁv = 1

N

∑

i

v̇i

= 1

N

∑

i

⎧
⎨

⎩ − ui − �(ν0) + �(vi + v0)

+ C

N

∑

j∈J

(
ui+ j (t − τ) − ui

) + √
2Dξi (t)

⎫
⎬

⎭

= −mu − �(v0) + 1

N

∑

i

�(vi + v0)

+ 1

N

∑

i

C

N

∑

j∈J

(
ui+ j (t − τ) − ui

)
. (15)

The third term in equation (15)may be evaluated as fol-
lows. In the limit of large N , one may replace the sum-
mation by an appropriate integral 1

N

∑
i �(vi + v0)

→ ∫
P (v) � (v + v0) dv, where P(v) is the prob-

ability density function. Now if all v variables are
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appropriately Gaussian distributed around mv(t), then
�(v + v0)maybewritten as�(v + v0) ≈ �(mv+v0)

+�′ (mv + v0) δv+ 1
2�

′′ (mv + v0) (δv)2. In the latter
expression, δv denotes the deviation δv = v−mv . The
integral may then be estimated as:

∫
P (v) � (v + v0)dv

= �(mv + v0)

∫
P (v) dv + �′ (mv + v0)

∫
P (v) δvdv + 1

2
�′′ (mv + v0)

∫
P(v)δv2dv

= �(mv + v0) + 1

2
�′′ (mv + v0) Sv (16)

since, by definition
∫
P (v) dv ≡ 1,

∫
P (v) (v − 〈v〉)

dv = 〈v〉 − 〈v〉 ∫
P (v) dv = 0 and

∫
P (v) (v − 〈v〉)2

dv ≡ Sv .
The fourth term in (15) can be handled as follows:

1

N

∑

i

C

N

∑

j∈J

(
ui+ j (t − τ) − ui (t)

)

=
〈
C

N

∑

j∈J

(
ui+ j (t − τ) − ui (t)

)
〉

= 2KC

N
(〈ui (t − τ)〉 − 〈ui (t)〉) =

= 2KC

N
(mu (t − τ) − mu (t)) . (17)

Proceeding from (15), one then obtains:

ṁv = −mu − �(v0) + �(mv + v0)

+ 1

2
�′′ (mv + v0) Sv

+ 2KC

N
(mu (t − τ) − mu (t)) . (18)

Let us now determine the equations for the dynamics of
the variances. From the definition of Su, it follows that

Ṡu = 〈2ui u̇i 〉 − 2muṁu = 〈2uivi 〉 − 2mumv

= 2 (U + mumv) − 2mumv = 2U (19)

For Sv, one finds:

Ṡv = 〈2vi v̇i + 2D〉 − 2mvṁv =
〈
2vi

⎛

⎝ − ui

−�(v0) + �(vi + v0)

+ C

N

∑

j∈J

(
ui+ j (t − τ) − ui

)
⎞

⎠
〉

− 2mv (−mu − �(v0) + �(mv + v0)

+ 1

2
�′′ (mv + v0) Sv + 2KC

N
(mu (t − τ)

−mu (t))) + 2D = −2 (U + mumv)

− 2mv� (v0) + 2 〈vi�(vi + v0)〉

+ 2C

N

〈
vi

∑

j∈J

(
ui+ j (t − τ) − ui

)
〉

+ 2mumv + 2mv� (v0) − 2mv� (mv + v0)

−mv�
′′ (mv + v0) Sv − 2mv

2KC

N
(mu (t − τ)

−mu (t)) + 2D, (20)

where the term 〈2vi v̇i + 2D〉 presents the Itō derivative
for the complex functionv2i of the stochastic variableνi .

The third term in (20) can be estimated in a fashion
similar to the second term in (15). In particular, one
may write:

2 〈vi�(vi + v0)〉 = 2 〈(mv + δvi ) (� (mv + v0)

+�′ (mv + v0) δvi + 1

2
�′′ (mv + v0) δv2i

)〉

= 2
〈
mv� (mv + v0) + mv�

′ (mv + v0) δvi

+1

2
mv�

′′ (mv + v0) δv2i

+�(mv + v0) δvi + �′ (mv + v0) δv2i

〉

= 2

(
mv� (mv + v0) + 1

2
mv�

′′ (mv + v0) Sv

+�′ (mv + v0) Sv

)
. (21)

Given that the deviations from the mean are expected
to be small, we keep only the terms up to second order
in deviations. Also,

∫
mv�

′ (mv) (v − 〈v〉) P (v) dv =
mv�

′ (mv) (〈v〉 − 〈v〉) = 0.
The fourth term in (20) can be calculated by imple-

menting the quasi-independence approximation:

2C

N

〈
vi

∑

j∈J

(
ui+ j (t − τ) − ui

)
〉

= 2C

N

〈
∑

j∈J

(
vi ui+ j (t − τ) − vi ui

)
〉
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= 2C

N

∑

j∈J

〈
vi ui+ j (t − τ)

〉 − 4KC

N
〈uivi 〉

= 2C

N

∑

j∈J

〈vi 〉
〈
ui+ j (t − τ)

〉

−4KC

N
(U + mumv)

= 4KC

N
mvmu (t − τ) − 4KC

N
(U + mumv) . (22)

From the strict mathematical viewpoint, one should
note that 〈vi(t) ui+j (t − τ)〉 = 〈vi(t)〉 〈ui + j (t − τ)〉
holds only for very large τ . This assumption is justi-
fied in the present case, since, according to Burridge
and Knopoff [1], time delay between the neighboring
group of seismically active elements (blocks) should
be two orders of magnitude smaller than correspond-
ing time constant for the moving blocks. On the con-
trary, in the present study, we examine the effect of
time delay up to value of τ = 3.5, i.e., of the order of
the oscillation period for the mean-field model (3) just
above the bifurcation curve (T ≈ 3.5), which is con-
sidered to correspond to seismic regime of large events,
as previously discussed in Sect. 4.

Inserting (21) and (22) into (20), one arrives at:

Ṡv = −2U

(
1 + 2KC

N

)
+ 2�′ (mv + v0) Sv + 2D

(23)

The equation for the dynamics of the covariance can
be obtained as follows:

U̇ = 〈u̇ivi 〉 + 〈ui v̇i 〉 − ṁumv − muṁv

=
〈
v2i

〉
+

〈
ui

⎛

⎝ − ui − �(v0) + �(vi + v0)

+ C

N

∑

j∈J

(
ui+ j (t − τ) − ui

) + √
2Dξi (t)

⎞

⎠
〉

−m2
v − mu (−mu − �(v0) + �(mv + v0)

+ 1

2
�′′ (mv + v0) Sv + 2KC

N
(mu (t − τ)

−mu (t))) (24)

The two terms that have to be consideredmore carefully

are 〈ui�(vi + v0)〉 and C
N

〈
ui

∑
j∈J

(
ui+ j (t − τ) − ui

)
〉
.

As for the former, one may write:

〈ui�(vi + v0)〉 =
〈

(mu + δui )

(
�(mv + v0)

+�′ (mv + v0) δvi + 1

2
�′′ (mv + v0) δv2i

)〉

=
〈
mu�(mv + v0) + mu�

′ (mv + v0) δvi

+ 1

2
mu�

′′ (mv + v0) δv2i

〉
+

+
〈
�(mv + v0) δui + �′ (mv + v0) δuiδvi

+ 1

2
�′′ (mv) δuiδv

2
i

〉
. (25)

In analogy to (21), one has
〈
mu�

′ (mv + v0) δvi
〉 = 0

and 〈�(mv + v0) δui 〉 = 0, whereas the last term in
(25) is assumed to be 0 because we keep only the terms
up to second order in deviations.

As for the fifth term in (25), one arrives at〈
�′ (mv + v0) δuiδvi

〉 = �′ (mv + v0) 〈δuiδvi 〉 =
�′ (mv + v0) 〈(ui − mu) (vi −mv)〉≡�′ (mv+v0)U .

Hence, continuing from (25):

〈ui�(vi + v0)〉 = mu�(mv + v0)

+1

2
mu�

′′ (mv + v0) Sv + �′ (mv + v0)U (26)

As for C
N

〈
ui

∑
j∈J

(
ui+ j (t − τ) − ui

)
〉
, one may write:

C

N

∑

j∈J

〈
ui (t) ui+ j (t − τ)

〉 − C

N

∑

j∈J

〈
u2i

〉

= C

N

∑

j∈J

〈ui 〉
〈
ui+ j (t − τ)

〉 − 2KC

N

(
Su + m2

u

)

= 2KC

N
mumu (t − τ) − 2KC

N

(
Su + m2

u

)
. (27)

Finally, proceeding from (24) and incorporating (26)
and (27), one obtains:

U̇ = Sv − Su

(
1 + 2KC

N

)
+ �′ (mv + v0)U (28)

Summarizing all the results so far, themean-fieldmodel
for collective dynamics of N blocks with 2K nearest-
neighbor interactions reads:
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ṁu = mv

ṁv = −mu − �(v0) + �(mv + v0)

+ 1

2
�′′ (mv + v0) Sv + 2KC

N
(mu (t−τ)−mu)

Ṡu = 2U

Ṡv = −2U

(
1 + 2KC

N

)
+ 2�′ (mv + v0) Sv + 2D

U̇ = Sv − Su

(
1 + 2KC

N

)
+ �′ (mv + v0)U (29)

In order for these equations to describe a self-consistent
system, it is required that the values of variances at
the stationary state are nonnegative. This is clearly ful-
filled given that Sstacv = − D

�′(mv+v0)
|mv=0 = Dv0

a ≥ 0

always holds and Sstacu = Sstacv

1+ 2KC
N

.

System (29) could be further simplified by taking
into account only the mean values of displacement
and velocity, i.e., by assuming that Ṡu (t) = Sv (t) =
U̇ (t) = 0. Such an assumption is justified considering
very small deviations from the mean displacement and
velocity. In other words, changes ofmean displacement
and velocity are one order of magnitude higher than
changes of corresponding variances and covariance.
Hence, the variances and the covariance can be replaced
by their stationary values. After this, we finally arrive
at the following equations for the mean-field approxi-
mated model:

ṁu (t) = mv (t)

ṁv (t) = −mu (t) + a ln (v0) − a ln (mv + v0)

+1

2

D

(mv + v0)
+ 2KC

N
(mu (t−τ)−mu (t))

(30)

The final form of (30) with included rate-dependent
friction term is given in the main text as system (3),
whereby the friction law is specified by Eq. (2).
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field approximation for noisy delay coupled excitable neu-
rons. Phys. A 389, 3956–3964 (2010)
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